6.14.7. - Sistema con due zeri complessi coniugati
La f.d.t. normalizzata è la seguente:
,
(6.14.7.1)
Posto , si ha:
,
(6.14.7.2)
al variare di w si deducono le seguenti relazioni:
Pertanto un circuito con una f.d.t. di questo tipo presenta una
attenuazione infinita in corrispondenza alla pulsazione , e viene, per questo motivo, chiamato filtro elimina-banda.
Poiché il valore della f.d.t. sia alle basse frequenze che alle alte frequenze è pari a
K, interessa determinare l'intervallo di frequenza in corrispondenza alle quali risulta
; tale intervallo viene anche chiamato banda di
reiezione. Risulta:
da entrambe si scarta la soluzione col segno meno davanti alla radice, perché inaccettabile una soluzione negativa. Le frequenze sono quindi:
.
Pertanto, anche la banda di reiezione è uguale al doppio del valore assoluto dell'ascissa comune dei due poli.